THE INTERNATIONAL CAT ASSOCIATION CERTIFIED PEDIGREE

Name of Cat: Mandysbengals Selena Printed: 10/24/2024

Date of Birth: 07/31/2023 Breed: Bengal (BG)

TICA Number: SBT 073123 052 Color: Seal Silver Mink Spotted Tabby

Eye Color: Agua Gender: Female

PARENTS GRANDPARENTS GREAT GRANDPARENTS S Dimira Best'S Elisey PK-H-0067.BEN/099/18/BG/Brown (Black) Spotted Tabby S Eestilinna'S Gucci Of Bengallys/Id SBT 092219 057/BG/Black Silver Spotted Tabby **Glam Shine Valere** SIRE: D P-36-2019-149/BG/Black Silver Spotted Tabby **Eleanorcats Rado of Mandysbengals** SBT 041422 109/BG/Black Silver Spotted Tabby S Velvet A-Murr*Ua Of Eleanorcats/Fi SBT 050118 070/BG/Brown (Black) Spotted Tabby **Eleanorcats Adamantium** D SBT 102519 096/BG/Black Silver Spotted Tabby **Eleanorcats Boreale** D SBT 071416 007/BG/Black Silver Spotted Tabby S Bengallys Metatron Of Akeerabengal SBT 042416 009/BG/Seal Sepia Spotted Tabby S Akeerabengal Leo Of Mandysbengals SBT 082917 083/BG/Seal Mink Spotted Tabby Sunshine Kisses Of Akeerabengal DAM: D SBT 052315 007/BG/Brown (Black) Spotted Tabby **Mandysbengals Cherie** SBT 032622 128/BG/Seal Mink S Julzjungle Simba SBT 111117 009/BG/Brown (Black) Spotted Tabby Eyeofthetiger Zara Of Mandysbengals D SBT 072419 014/BG/Brown (Black) Spotted Tabby **Bengallys Antigone Of Eyeofthetiger** D SBT 072815 016/BG/Brown (Black) Spotted Tabby

Breeder: Kris Simpson
Owner: Kris Simpson

Frances Cardena Executive Secretary

Support: 800-341-3440 Market Lane Animal Hospital 905-856-6770

Tests RunKeyscreen GI Parasite PCR Panel

Dr. Mina, Dvm NASEEM Received 11/26/2025 7:38 PM Reported 11/27/2025 9:43 AM

Patient Name Owner Species Breed Sex Age Chart #
Selena Cherie Kitten Simpson Kris Feline Bengal F 2Y N

Keyscreen GI Parasite PCR Panel

Test Requested	Result	Reference Interval	Visual Ref. Interval	May 02, 2025	Dec 05, 2024
Ancylostoma spp.	Undetected			Undetected	Undetected
A. caninum resistance marker	Undetected			Undetected	Undetected
Uncinaria stenocephala	Undetected			Undetected	Undetected
Toxocara spp.	Undetected			Undetected	Undetected
Toxocara canis	Undetected			Undetected	Undetected
Toxocara cati	Undetected			Undetected	Undetected
Toxascaris leonina	Undetected			Undetected	Undetected
Baylisascaris procyonis	Undetected			Undetected	Undetected
Trichuris spp.	Undetected			Undetected	Undetected
Giardia duodenalis	Undetected			Undetected	Undetected
Giardia Zoonotic	Undetected			Undetected	Undetected
Cryptosporidium canis	Undetected			Undetected	Undetected
Cryptosporidium felis	Undetected			Undetected	Undetected
Cystoisospora spp.	Undetected			Undetected	Undetected
Eimeria spp.	Undetected			Undetected	Undetected
Dipylidium caninum	Undetected			Undetected	Undetected
Echinococcus multilocularis	Undetected			Undetected	Undetected
Echinococcus granulosus	Undetected			Undetected	Undetected
Taenia spp.	Undetected			Undetected	Undetected
Tritrichomonas blagburni/foetus	Undetected			Undetected	Undetected
Toxoplasma gondii	Undetected			Undetected	Undetected
Neospora caninum	Undetected			Undetected	Undetected

COMMENT ①

Keyscreen GI Parasite PCR Panel

1. Comment -

Comments

A DETECTED KeyScreen GI Parasite PCR result in a patient with clinical signs that are appropriate to the organism, suggests this is the likely cause of the clinical signs. In the absence of clinical signs, parasite detection could suggest a subclinical infection or be related to coprophagia. Subclinical infection may need to be treated in cases where the parasite is zoonotic, has the potential to cause clinical signs or where continued shedding contributes to environmental contamination.

An UNDETECTED KeyScreen GI Parasite PCR result indicates that no parasitic organism was detected. An undetected PCR result most often indicates absence of infection but might also occur after successful treatment or with spontaneous resolution of infection. Undetected results due to cyclical shedding may be overcome with repeat testing or by testing pooled samples collected over multiple days.

For infections with an extra-intestinal phase (e.g., echinococcosis, toxoplasmosis, neosporosis), an undetected KeyScreen GI Parasite PCR result does not rule out systemic infection. If systemic infection is suspected, additional diagnostic investigation is indicated.

Selena Cherie Kitten Simpson Kris

As a reference, we have provided links to CAPC guidelines. CAPC is an independent, non-profit organization.

Veterinarians: If the KeyScreen GI Parasite PCR result does not explain the clinical signs or if you require additional interpretive assistance, consultation with an internist is available free of charge (Monday to Friday 8am to 8pm EST, Saturday 9am to 6pm EST) at 1-888-838-4636.

Selena Cherie Kitten

Support: 1-800-872-1001 Market Lane Animal Hospital 905-856-6770

FeLV Antigen (ELISA) | FIV Antibody

20M N

F

Dr. Mina, Dvm NASEEM				Received 04/09/2025 20:24:00	Reported 04/10/2025 - 12:13 PM
4	Patient Name	Owner	Species	Breed	Sex Age Chart#

Feline

Bengal

FeLV Antigen (ELISA)

Test Requested	Result	Reference Interval	Visual Ref. Interval
FeLV Ag, ELISA	Negative	*NEG	

FIV Antibody

Test Requested	Result	Reference Interval	Visual Ref. Interval
FIV Antibody	NEGATIVE	*NEG	

COMMENTS

If recent infection cannot be excluded, retesting >60 days after last exposure is recommended.

Simpson Kris

BFNGAI

Registration: SBT 073123 052 **Kit type:** Optimal Selection - Feline

ID kit: FJTNGDZ Test date: 2024-10-24

Selena's Profile

Pet information

Registered nameSexSelenaF

Owner reported breedDate of birthBengal2023-07-31

Genetic Diversity

Selena's Percentage of Hetereozygosity

34%

Health summary

At Risk 0 conditions

Carrier 0 conditions

Clear 50 conditions

RENGAL

Registration: SBT 073123 052 **Kit type:** Optimal Selection - Feline

ID kit: FJTNGDZ Test date: 2024-10-24

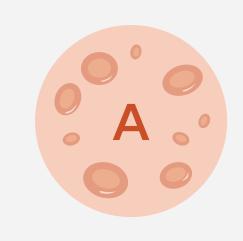
Genetic Diversity

Heterozygosity

Selena's Percentage of Heterozygosity

34%

Selena's genome analysis shows an average level of genetic heterozygosity when compared with other Bengals.


Typical Range for Bengals

31% - 36%

Registration: SBT 073123 052 Kit type: Optimal Selection - Feline ID kit: FJTNGDZ Test date: 2024-10-24

Blood Type

Blood type

Genotype*

Type A (Most common)

A/c (Carrier for Blood Type AB)

Transfusion risk

⚠ Moderate

Selena has the most common blood type. She can be transfused with Type A blood.

Breeding risk

✓ Low

If breeding, Selena has a low risk of blood type incompatibility with nursing kittens.

Blood variants tested*

Variant Tested	Description	Copies
b variant 1	(Common b variant)	0
b variant 2	(Discovered in Turkish breeds)	0
b variant 3	(Discovered in Ragdolls)	0
c variant - Causes AB Blood Type	(Discovered in Ragdolls)	1

^{*}This test identifies three known 'b' variants and one known 'c' variant in the CMAH gene when determining a cat's genetic blood type. Blood $\label{thm:continuous} \mbox{Type A is inferred in reporting when less than two genetic blood variants are detected.}$

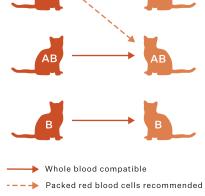
RENGAL

✓ WISDOM PANEL™

Registration: SBT 073123 052 ID kit: FJTNGDZ

Kit type: Optimal Selection - Feline Test date: 2024-10-24

Interpreting feline blood types


About blood type determination

The three important feline blood types of A, B, and AB are governed primarily by variants in the CMAH gene. A cat's blood type can be determined by its genotype, which consists of two gene variants – one inherited from each parent – that should be interpreted together. When determining blood type based on genotype, the A variant associated with blood type A is most dominant while the b variants associated with blood type B are most recessive. The c variant associated with blood type AB is intermediate between the A and b variants, meaning it is recessive to the A variant but dominant to b variants. Therefore, a genotype with at least one A variant will result in blood type A. For a cat to have blood type B, the genotype must consist of two b variants. Because the c variant is intermediate, a cat with blood type AB can either have a genotype consisting of two c variants or one c variant and one b variant.

About transfusion risk

Similar to humans, the different cat blood types will express different antigens on the surface of their red blood cells. This is significant because both type A and B cats are born with antibodies against other blood cell antigens. Notably, type B cats have high levels of antibodies against type A antigens. Cats with the rare blood type AB are most versatile as they express both red cell antigen types and, thus, can receive both type A and type AB blood transfusions.

Unlike humans, there is no cat blood type that can act as a universal blood donor. If a cat receives a non-compatible blood type during a transfusion, it may cause a severe, life-threatening reaction including fever, kidney failure, and widespread destruction of red blood cells. Prior to all transfusions, cats should be serologically typed and crossmatched to ensure compatibility.

About breeding risk

During pregnancy, kittens are shielded from their mother's immune system. However, when kittens begin nursing, they receive some of their mother's antibodies in colostrum. Type B cats have high levels of antibodies against type A blood, so when blood type A or AB kittens are born to a blood type B mother, these antibodies, when absorbed by the newborn kitten, cause neonatal isoerythrolysis, a potentially fatal destruction of the kitten's red blood cells. Kittens of type B mothers with fathers of unknown or type A blood should be bottle fed or foster-nursed, and separated from their mother for the first 24 hours to avoid this reaction, unless blood typing performed immediately following birth shows the kitten to have a compatible blood type to the mother.

Although some blood types are less common and require additional planning when breeding, they represent normal genetic variation and should not be selected against when choosing breeding pairs.

Current limits of this test

This test identifies 4 variants (b variants c.269T>A, c.179G>T, c.1233delT and c variant c.346C>T) in the CMAH gene discovered in the domestic cat population and has been confirmed 99% concordant with serologic blood typing¹. Mik antigens also play a role in blood type compatibility, and are not included in this test. Cats carrying undetermined, new, or undiscovered variants in CMAH or other genes may have a different blood type compatibility than that reported by this test. Accuracy of this test at predicting blood type in wildcats or wildcat hybrid breeds has not been determined.

1. Anderson H, Davison S, Lytle KM, Honkanen L, et al. Genetic epidemiology of blood type, disease and trait variants, and genome-wide genetic diversity in over 11,000 domestic cats (2022) PLOS Genetics.

RENGAL

Registration: SBT 073123 052 ID kit: FJTNGDZ

Kit type: Optimal Selection - Feline Test date: 2024-10-24

Health conditions known in the breed

	Gene	Risk Variant	Copies	Inheritance	Result
Progressive Retinal Atrophy (Discovered in the Abyssinian)	CEP290	T>G	0	AR	Clear

Information about the genetic condition

Progressive Retinal Atrophy (PRA), in the rdAc form, follows the typical pattern where functional loss of rod photoreceptors occurs first, followed by loss of function of cone photoreceptors. Age of onset for this form of PRA is typically late, with the first ophthalmoscopic signs of affected cats seen at one to two years of age. These signs may include a slight grayish discoloration along the central fundus progressing to the entire tapetal fundus, a hyper-reflective tapetum and attenuated blood vessels. The disorder is progressive, causing increasing levels of vision loss and eventual blindness by three to seven years of age. Early indications of visual compromise may include disorientation and lack of awareness of changes to the surroundings, especially in low light conditions. Affected cats may accidentally bump into things and become more vocal.

Breeder recommendation

This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to be shown. A carrier cat with one copy of the PRA mutation can be safely bred with a clear cat with no copies of the PRA mutation. About half of the kittens will have one copy (carriers) and half will have no copies of the PRA mutation. Kittens in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected kittens. Please note: It is possible that disease signs similar to the ones caused by the PRA mutation could develop due to a different genetic or clinical cause.

	Gene	Risk Variant	Copies	Inheritance	Result
Progressive Retinal Atrophy (Discovered in the Bengal)	KIF3B	G>A	0	AR	Clear

Information about the genetic condition

Bengal Progressive Retinal Atrophy is characterized by an early-onset degeneration of the retinal photoreceptors with a rapid progression to blindness. The rod photoreceptors degenerate first with reduced rod function seen at about seven weeks of age. The cone photoreceptors degenerate next with reduced cone function seen at about nine weeks of age. Signs of disease include dilated pupils, a hyper-reflective tapetum and attenuated blood vessels. Visual deficits are behaviorally evident in cats by one year of age with night vision affected first. Early indications of visual compromise may include disorientation and lack of awareness of changes to the surroundings. Affected cats may accidentally bump into things and become more vocal.

Breeder recommendation

This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to be shown. A carrier cat with one copy of the Bengal Progressive Atrophy mutation can be safely bred with a clear cat with no copies of the Bengal Progressive Atrophy mutation. About half of the kittens will have one copy (carriers) and half will have no copies of the Bengal Progressive Atrophy mutation. Kittens in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected kittens. Please note: It is possible that disease signs similar to the ones caused by the Bengal Progressive Atrophy mutation could develop due to a different genetic or clinical cause.

RENGAL

Registration: SBT 073123 052 ID kit: FJTNGDZ

Kit type: Optimal Selection - Feline Test date: 2024-10-24

Health conditions known in the breed

	Gene	Risk Variant	Copies	Inheritance	Result
Pyruvate Kinase Deficiency	PKLR	G>A	0	AR	Clear

Information about the genetic condition

Pyruvate Kinase (PK) Deficiency presents as a chronic, intermittent, hemolytic anemia. The disorder has a high variability of age of onset and severity of clinical signs. The age of onset of clinical signs varies from six months to five years of age. Clinical signs of the disorder are highly variable but may include lethargy, weakness, diarrhea, pale mucous membranes, anorexia, poor coat quality, weight loss, icterus (jaundice), splenomegaly, and ascites in severe cases. The severity of clinical signs also varies greatly with some cats maintaining adequate quality of life and others requiring euthanasia. The disorder has been reported in multiple cat breeds.

Breeder recommendation

This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to be shown. A carrier cat with one copy of the Pyruvate Kinase Deficiency mutation can be safely bred with a clear cat with no copies of the Pyruvate Kinase Deficiency mutation. About half of the kittens will have one copy (carriers) and half will have no copies of the Pyruvate Kinase Deficiency mutation. Kittens in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected kittens. Please note: It is possible that disease signs similar to the ones caused by the Pyruvate Kinase Deficiency mutation could develop due to a different genetic or clinical cause.

BENGAL

Registration: SBT 073123 052 **Kit type:** Optimal Selection - Feline

ID kit: FJTNGDZ
Test date: 2024-10-24

Traits

Coat Color

	Gene	Variant	Copies	Result
Charcoal (Discovered in the Bengal)	ASIP	APb	0	No effect
Solid Color	ASIP	а	0	Banded hairs, tabby patterns likely
Gloving (Discovered in the Birman)	KIT	Ma	0	No effect
Partial and Full White	KIT	W or w ^s	0	No effect
Amber (Discovered in the Norwegian Forest Cat)	MC1R	е	0	No effect
Russet (Discovered in the Burmese)	MC1R	er	0	No effect
Dilution	MLPH	d	0	No effect
Albinism (Discovered in Oriental breeds)	TYR	Ca	0	No effect
Colorpoint (Discovered in the Burmese) Two copies of this variant result in a colorpoint pattern, although this can be blocked by other variants. Cats with one copy of the Colorpoint (Discovered in the Burmese) variant and one copy of the Colorpoint (Discovered in the Siamese) variant will show a lighter base coat color and more contrasting colorpoint pattern than cats with two copies of the Colorpoint (Discovered in the Burmese) variant.	TYR	Ср	2	Burmese colorpoint pattern likely
Colorpoint (Discovered in the Siamese)	TYR	Cs	0	No effect
Mocha (Discovered in the Burmese)	TYR	Cm	0	No effect
Chocolate	TYRP	b	0	No effect
Cinnamon	TYRP	bι	0	No effect

Coat Type

	Gene	Variant	Copies	Result
Long Hair (Discovered in many breeds)	FGF5	M4	0	No effect
Long Hair (Discovered in the Norwegian Forest Cat)	FGF5	M2	О	No effect

Registration: SBT 073123 052 **Kit type:** Optimal Selection - Feline

ID kit: FJTNGDZ Test date: 2024-10-24

Coat Type

	Gene	Variant	Copies	Result
Long Hair (Discovered in the Ragdoll and Maine Coon)	FGF5	МЗ	0	No effect
Long Hair (Discovered in the Ragdoll)	FGF5	M1	0	No effect
Lykoi Coat (Variant 1)	HR	hr ^{Ca}	0	No effect
Lykoi Coat (Variant 2)	HR	hr ^{VA}	0	No effect
Hairlessness (Discovered in the Sphynx)	KRT71	re ^{hr}	0	No effect
Rexing (Discovered in the Devon Rex)	KRT71	redr	0	No effect
Rexing (Discovered in the Cornish Rex and German Rex)	LPAR6	r	0	No effect
Glitter	Pending	gl	1	No effect
Two copies of the Glitter variant are needed for the glitter coat to be seen.				

Tail Length

	Gene	Variant	Copies	Result
Short Tail (Variant 3)	HES7	jb	0	No effect
Short Tail (Variant 1)	Т	C1199del	0	No effect
Short Tail (Variant 2)	Т	T988del	0	No effect

Extra Toes

	Gene	Variant	Copies	Result
Polydactyly (Variant 1)	LIMBR1	HW	0	No effect
Polydactyly (Variant 2)	LIMBR1	UK1	Ο	No effect
Polydactyly (Variant 3)	LIMBR1	UK2	0	No effect

BENGAL

Registration: SBT 073123 052 Kit type: Optimal Selection - Feline ID kit: FJTNGDZ Test date: 2024-10-24

Other health conditions tested

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Acute Intermittent Porphyria (Variant 1)	HMBS	Deletion	0	AD	Clear
Acute Intermittent Porphyria (Variant 2)	HMBS	G>A	0	AD	Clear
Acute Intermittent Porphyria (Variant 3)	HMBS	Insertion	0	AD	Clear
Acute Intermittent Porphyria (Variant 4)	HMBS	Deletion	0	AD	Clear
Acute Intermittent Porphyria (Variant 5)	HMBS	G>A	0	AR	Clear
Autoimmune Lymphoproliferative Syndrome (Discovered in British Shorthair)	FASL	Insertion	0	AR	Clear
Burmese Head Defect (Discovered in the Burmese)	ALX1	Deletion	0	AD	Clear
Chediak-Higashi Syndrome (Discovered in the Persian)	LYST	Insertion	O	AR	Clear
Congenital Adrenal Hyperplasia	CYP11B1	G>A	0	AR	Clear
Congenital Erythropoietic Porphyria	UROS	G>A	0	AR	Clear
Congenital Myasthenic Syndrome (Discovered in the Devon Rex and Sphynx)	COLQ	G>A	0	AR	Clear
Cystinuria Type 1A	SCL3A1	C>T	0	AR	Clear
Cystinuria Type B (Variant 1)	SCL7A9	C>T	0	AR	Clear
Cystinuria Type B (Variant 2)	SCL7A9	G>A	0	AR	Clear
Cystinuria Type B (Variant 3)	SCL7A9	T>A	0	AR	Clear
Dihydropyrimidinase Deficiency	DPYS	G>A	0	AR	Clear
Earfold and Osteochondrodysplasia (Discovered in the Scottish Fold)	TRPV4	G>T	0	AD	Clear
Factor XII Deficiency (Variant 1)	F12	Deletion	0	ARa	Clear
Factor XII Deficiency (Variant 2)	F12	Deletion	0	ARa	Clear
Familial Episodic Hypokalemic Polymyopathy (Discovered in the Burmese)	WNK4	C>T	0	AR	Clear
Glutaric Aciduria Type II	ETFDH	T>G	0	AR	Clear

BENGAL

✓ WISDOM PANEL™

Registration: SBT 073123 052 Kit type: Optimal Selection - Feline ID kit: FJTNGDZ Test date: 2024-10-24

Other health conditions tested

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Glycogen Storage Disease (Discovered in the Norwegian Forest Cat)	GBE1	Insertion	0	AR	Clear
GM1 Gangliosidosis	GLB1	G>C	0	AR	Clear
GM2 Gangliosidosis	GM2A	Deletion	0	AR	Clear
GM2 Gangliosidosis Type II (Discovered in Domestic Shorthair cats)	HEXB	Insertion	0	AR	Clear
GM2 Gangliosidosis Type II (Discovered in Japanese domestic cats)	HEXB	C>T	0	AR	Clear
GM2 Gangliosidosis Type II (Discovered in the Burmese)	HEXB	Deletion	0	AR	Clear
Hemophilia B (Variant 1)	F9	C>T	0	XR	Clear
Hemophilia B (Variant 2)	F9	G>A	0	XR	Clear
Hyperoxaluria Type II	GRHPR	G>A	0	AR	Clear
Hypertrophic Cardiomyopathy (Discovered in the Maine Coon)	MYBPC	G>C	0	AR	Clear
Hypertrophic Cardiomyopathy (Discovered in the Ragdoll)	MYBPC	C>T	0	AD	Clear
Hypotrichosis (Discovered in the Birman)	FOXN1	Deletion	0	AR	Clear
Lipoprotein Lipase Deficiency	LPL	G>A	0	AR	Clear
MDR1 Medication Sensitivity	ABCB1	Deletion	0	AR	Clear
Mucopolysaccharidosis Type I	IDUA	Deletion	0	AR	Clear
Mucopolysaccharidosis Type VI	ARSB	T>C	0	AR	Clear
Mucopolysaccharidosis Type VI Modifier	ARSB	G>A	0	MO	Clear
Mucopolysaccharidosis Type VII (Variant 1)	GUSB	G>A	0	AR	Clear
Mucopolysaccharidosis Type VII (Variant 2)	USB	C>T	0	AR	Clear
Myotonia Congenita	CLCN1	G>T	0	AR	Clear
Polycystic Kidney Disease (PKD)	PKD1	C>A	0	AD	Clear

BENGAL

Registration: SBT 073123 052 Kit type: Optimal Selection - Feline ID kit: FJTNGDZ Test date: 2024-10-24

Other health conditions tested

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Progressive Retinal Atrophy (Discovered in the Persian)	AIPL1	C>T	0	AR	Clear
Sphingomyelinosis (Variant 1)	NPC1	G>C	0	AR	Clear
Sphingomyelinosis (Variant 2)	NPC2	G>A	0	AR	Clear
Spinal Muscular Atrophy (Discovered in the Maine Coon)	LIX1	Deletion	0	AR	Clear
Vitamin D-Dependent Rickets	CYP27B1	G>T	0	AR	Clear

RENGAL

Registration: SBT 073123 052 ID kit: FJTNGDZ

Kit type: Optimal Selection - Feline Test date: 2024-10-24

Glossary of genetic terms

Test result definitions

At Risk: Based on the disorder's mode of inheritance, the cat inherited a number of genetic variant(s) which increases the cat's risk of being diagnosed with the associated disorder.

Carrier: The cat inherited one copy of a genetic variant when two copies are usually necessary to increase the cat's risk of being diagnosed with the associated disorder. While carriers are usually not at risk of clinical expression of the disorder, carriers of some complex variants may be associated with a low risk of developing the disorder.

Notable: Inheriting two copies of the genetic variant is noteworthy for specific aspects of health and breeding of the cat, but the cat should otherwise not suffer disease due to this genetic cause when in absence of other genetic variants.

Clear: The cat did not inherit the genetic variant(s) associated with the disorder and will not be at elevated risk of being diagnosed with the disorder due to this genotype. However, similar clinical signs could develop from different genetic or clinical causes.

Inconclusive: An inconclusive result indicates a confident call could not be made based on the data for that genetic variant. Health testing is performed in replicates, and on occasion the outcomes do not agree. This may occur due to an unusual sequence of DNA in the region tested, multiple cell genotypes present due to chimerism or acquired mutations, or due to quality of the DNA sample.

Inheritance mode definitions

Autosomal Recessive (AR): For autosomal recessive disorders, cats with two copies of the genetic variant are at risk of developing the associated disorder. Cats with one copy of the variant are considered carriers and are usually not at risk of developing the disorder. However, carriers of some complex variants grouped in this category may be associated with a low risk of developing the disorder. Cats with one or two copies may pass the disorder-associated variant to their kittens if bred.

Autosomal Recessive, asymptomatic (ARa): For autosomal recessive, asymptomatic disorders, cats with two copies of the variant can exhibit certain aspects of the variant-associated disorder but otherwise, they should not suffer clinical disease as typically expected with autosomal recessive disorders. Cats with one copy of the variant are called carriers and should not exhibit any aspect of the disorder. However, cats with one or two copies may pass the disorder-associated variant to their kittens if bred.

Autosomal Dominant (AD): For autosomal dominant disorders, cats with one or two copies of the genetic variant are at risk of developing the associated disorder. Inheriting two copies of the variant may increase the risk of development of the disorder or cause the condition to be more severe. These cats may pass the disorder-associated variant to their kittens if bred.

X-linked Recessive (XR): For X-linked recessive disorders, the genetic variant is found on the X chromosome. Female cats must inherit two copies of the variant to be at risk of developing the condition, whereas male cats only need one copy to be at risk. Males and females with any copies of the variant may pass the disorder-associated variant to their kittens if bred.

Modifier (MO): Genetic modifiers do not cause disease on their own but can cause disease or change the onset or severity of a disorder when combined with another disorder-associated variant. For some modifier variants only one copy is required to cause an effect, for others two copies are required. Please refer to the associated variant's breeder recommendations regarding safe breeding practices for each modifier variant